Redirecting to the article...
Click here if you are not automatically redirected
October 5, 2021
Organizations Can Now Gain No-Code Machine Learning for Spike, Trend and Anomaly Detection with Real-Time Digital Twins Harnessing Microsoft ML.NET
BELLEVUE, Wash – October 5, 2021 – ScaleOut Software today announced major extensions to its ScaleOut Digital Twin Streaming Service™ that enable real-time digital twin software to implement and host machine learning and statistical analysis algorithms that immediately identify unexpected behaviors exhibited by incoming telemetry. Real-time digital twins can now make extensive use of Microsoft’s ML.NET machine learning library to implement these groundbreaking capabilities for virtually any IoT device or source object.
Integration of machine learning with real-time digital twins offers powerful new options for real-time monitoring across a wide variety of applications. For example, cloud-based real-time digital twins can track a fleet of trucks to identify subtle changes in key engine parameters with predictive analytics that avoid costly failures. Security monitors tracking perimeter entrances and sound sensors can use machine learning techniques to automatically identify unexpected behaviors and generate alerts.
By harnessing the no-code ScaleOut Model Development Tool™, a real-time digital twin can easily be enhanced to automatically analyze incoming telemetry messages using machine learning techniques. Machine learning provides important real-time insights that enhance situational awareness and enable fast, effective responses. The tool provides three configuration options for analyzing numeric parameters contained within incoming messages to spot issues as they arise:
Once configured through the ScaleOut Model Development Tool, the ML algorithms run automatically and independently for each data source within their corresponding real-time digital twins as incoming messages are received. Each real-time digital twin can automatically capture anomalous events for follow-up analysis and generate alerts to popular alerting providers, such as Splunk, Slack, and Pager Duty, to support remediation by service or security teams.
“We are excited to offer powerful machine learning capabilities for real-time digital twins that will make it even easier to immediately spot issues or identify opportunities across a large population of data sources,” said Dr. William Bain, ScaleOut Software’s CEO and founder. “ScaleOut Software has built the next step in the evolution of the Microsoft Azure IoT and ML.NET ecosystem, and we look forward to helping our customers harness these technologies to enhance their real-time monitoring and streaming analytics.”
Benefits of ScaleOut’s Real-Time Digital Twins with Machine Learning
Integrating machine learning into ScaleOut’s real-time digital twins offers these key benefits:
For more information, please visit www.scaleoutsoftware.com and follow @ScaleOut_Inc on Twitter.
Additional Resources:
About ScaleOut Software
Founded in 2003, ScaleOut Software develops leading-edge software that delivers scalable, highly available, in-memory computing and streaming analytics technologies to a wide range of industries. ScaleOut Software’s in-memory computing platform enables operational intelligence by storing, updating, and analyzing fast-changing, live data so that businesses can capture perishable opportunities before the moment is lost. It has offices in Bellevue, Washington and Beaverton, Oregon.
###
Contact:
RH Strategic for ScaleOut Software
206-264-0246